Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigation of aluminium and indium in situ doping of chemical bath deposited CdS thin films

Identifieur interne : 006399 ( Main/Repository ); précédent : 006398; suivant : 006400

Investigation of aluminium and indium in situ doping of chemical bath deposited CdS thin films

Auteurs : RBID : Pascal:08-0455423

Descripteurs français

English descriptors

Abstract

Aluminum and indium in situ doping of CdS using chemical bath deposition (CBD) is investigated. The effects of Al and In-doping on optical properties as well as on electrical properties, crystal structure, chemistry and morphology of CdS films are studied. Al doping of CdS using CBD is shown to be successful where a resistivity as low as 4.6 x 10-2 Ω cm and a carrier density as high as 1.1 x 1019 cm-3 were achieved. The bandgap of Al-doped films decreases to a minimum of 2.26 eV, then slightly increases and finally saturates at 2.30 eV as the [Al]/[Cd] ratio in solution increases from 0.018 to 0.18. X-ray diffraction studies showed Al3+ ions entering the lattice substitutionally at low concentration and interstitially at high concentration. Phase transition, due to annealing, and induced lattice damage, due to doping, were detected by micro-Raman spectroscopy. Film stoichiometry was found to be sensitive to Al concentration, while film morphology was unaffected by Al doping. Indium doping using CBD, however, was found to be highly unlikely due to the low solubility of indium sulfide. Instead, the formation of InS/In2S3 dominated the deposition process over CdS.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0455423

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Investigation of aluminium and indium in situ doping of chemical bath deposited CdS thin films</title>
<author>
<name sortKey="Khallaf, Hani" uniqKey="Khallaf H">Hani Khallaf</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Central Florida</s1>
<s2>Orlando, FL 32816</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Orlando, FL 32816</wicri:noRegion>
</affiliation>
</author>
<author>
<name>GUANGYU CHAI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Apollo Technologies, Inc., 205 Waymont Court, Suite 111</s1>
<s2>Lake Mary, FL 32746</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lake Mary, FL 32746</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lupan, Oleg" uniqKey="Lupan O">Oleg Lupan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Central Florida</s1>
<s2>Orlando, FL 32816</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Orlando, FL 32816</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Boulevard</s1>
<s2>2004 Chisinau</s2>
<s3>MDA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Moldavie</country>
<wicri:noRegion>2004 Chisinau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chow, Lee" uniqKey="Chow L">Lee Chow</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Central Florida</s1>
<s2>Orlando, FL 32816</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Orlando, FL 32816</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Park, S" uniqKey="Park S">S. Park</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Central Florida</s1>
<s2>Orlando, FL 32816</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Orlando, FL 32816</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schulte, Alfons" uniqKey="Schulte A">Alfons Schulte</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Central Florida</s1>
<s2>Orlando, FL 32816</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Orlando, FL 32816</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0455423</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0455423 INIST</idno>
<idno type="RBID">Pascal:08-0455423</idno>
<idno type="wicri:Area/Main/Corpus">006268</idno>
<idno type="wicri:Area/Main/Repository">006399</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectra</term>
<term>Aluminium additions</term>
<term>Cadmium sulfide</term>
<term>Carrier density</term>
<term>Chemical bath deposition</term>
<term>Crystal structure</term>
<term>Deposition process</term>
<term>Doping</term>
<term>Electrical conductivity</term>
<term>Energy gap</term>
<term>Indium additions</term>
<term>Microstructure</term>
<term>Reflection spectrum</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Addition indium</term>
<term>Dépôt bain chimique</term>
<term>Spectre absorption</term>
<term>Spectre réflexion</term>
<term>Bande interdite</term>
<term>Structure cristalline</term>
<term>Microstructure</term>
<term>Dopage</term>
<term>Conductivité électrique</term>
<term>Procédé dépôt</term>
<term>Densité porteur charge</term>
<term>Addition aluminium</term>
<term>Sulfure de cadmium</term>
<term>Couche mince</term>
<term>CdS</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aluminum and indium in situ doping of CdS using chemical bath deposition (CBD) is investigated. The effects of Al and In-doping on optical properties as well as on electrical properties, crystal structure, chemistry and morphology of CdS films are studied. Al doping of CdS using CBD is shown to be successful where a resistivity as low as 4.6 x 10
<sup>-2</sup>
Ω cm and a carrier density as high as 1.1 x 10
<sup>19</sup>
cm
<sup>-3</sup>
were achieved. The bandgap of Al-doped films decreases to a minimum of 2.26 eV, then slightly increases and finally saturates at 2.30 eV as the [Al]/[Cd] ratio in solution increases from 0.018 to 0.18. X-ray diffraction studies showed Al
<sup>3+</sup>
ions entering the lattice substitutionally at low concentration and interstitially at high concentration. Phase transition, due to annealing, and induced lattice damage, due to doping, were detected by micro-Raman spectroscopy. Film stoichiometry was found to be sensitive to Al concentration, while film morphology was unaffected by Al doping. Indium doping using CBD, however, was found to be highly unlikely due to the low solubility of indium sulfide. Instead, the formation of InS/In
<sub>2</sub>
S
<sub>3</sub>
dominated the deposition process over CdS.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>41</s2>
</fA05>
<fA06>
<s2>18</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Investigation of aluminium and indium in situ doping of chemical bath deposited CdS thin films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KHALLAF (Hani)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUANGYU CHAI</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LUPAN (Oleg)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHOW (Lee)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PARK (S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SCHULTE (Alfons)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, University of Central Florida</s1>
<s2>Orlando, FL 32816</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Apollo Technologies, Inc., 205 Waymont Court, Suite 111</s1>
<s2>Lake Mary, FL 32746</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Boulevard</s1>
<s2>2004 Chisinau</s2>
<s3>MDA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>185304.1-185304.10</s2>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000185757960260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>47 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0455423</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Aluminum and indium in situ doping of CdS using chemical bath deposition (CBD) is investigated. The effects of Al and In-doping on optical properties as well as on electrical properties, crystal structure, chemistry and morphology of CdS films are studied. Al doping of CdS using CBD is shown to be successful where a resistivity as low as 4.6 x 10
<sup>-2</sup>
Ω cm and a carrier density as high as 1.1 x 10
<sup>19</sup>
cm
<sup>-3</sup>
were achieved. The bandgap of Al-doped films decreases to a minimum of 2.26 eV, then slightly increases and finally saturates at 2.30 eV as the [Al]/[Cd] ratio in solution increases from 0.018 to 0.18. X-ray diffraction studies showed Al
<sup>3+</sup>
ions entering the lattice substitutionally at low concentration and interstitially at high concentration. Phase transition, due to annealing, and induced lattice damage, due to doping, were detected by micro-Raman spectroscopy. Film stoichiometry was found to be sensitive to Al concentration, while film morphology was unaffected by Al doping. Indium doping using CBD, however, was found to be highly unlikely due to the low solubility of indium sulfide. Instead, the formation of InS/In
<sub>2</sub>
S
<sub>3</sub>
dominated the deposition process over CdS.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dépôt bain chimique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Chemical bath deposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Depósito baño químico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Spectre réflexion</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Reflection spectrum</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Espectro reflexión</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Procédé dépôt</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Deposition process</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Procedimiento revestimiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Addition aluminium</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Aluminium additions</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fN21>
<s1>294</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006399 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 006399 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:08-0455423
   |texte=   Investigation of aluminium and indium in situ doping of chemical bath deposited CdS thin films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024